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A general formalism is developed to statistically characterize the microstructure 
of porous and other composite media composed of inclusions (particles) dis- 
tributed throughout a matrix phase (which, in the case of porous media, is the 
void phase). This is accomplished by introducing a new and general n-point dis- 
tribution function HA and by deriving two series representations of it in terms of 
the probability density functions that characterize the configuration of particles; 
quantities that, in principle, are known for the ensemble under consideration. In 
the special case of an equilibrium ensemble, these two equivalent but 
topologically different series for the H, are generalizations of the Kirkwood 
Salsburg and Mayer hierarchies of liquid-state theory for a special mixture of 
particles described in the text. This methodology provides a means of 
calculating any class of correlation functions that have arisen in rigorous 
bounds on transport properties (e.g., conductivity and fluid permeability) and 
mechanical properties (e.g., elastic moduli) for nontrivial models of two-phase 
disordered media. Asymptotic and bounding properties of the general function 
H,, are described. To illustrate the use of the formalism, some new results are 
presented for the H, and it is shown how such information is employed to com- 
pute bounds on bulk properties for models of fully penetrable (i.e., randomly 
centered) spheres, totally impenetrable spheres, and spheres distributed with 
arbitrary degree of impenetrability. Among other results, bounds are computed 
on the fluid permeability, for assemblages of impenetrable as well as penetrable 
spheres, with heretofore unattained accuracy. 
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1. I N T R O D U C T I O N  

The quantitative characterization of the microstructure of disordered media 
is an important problem in both the physical and natural sciences. In many 
man-made and natural instances, the disordered medium is composed of 
two phases such that one of the phases consists of discrete inclusions (par- 
ticles) distributed throughout a matrix phase according to some probability 
density function. Examples of such disordered two-phase media include 
composite materials, suspensions, porous media, and biological mem- 
branes, to mention but a few. In the case of porous media, the matrix phase 
represents the void or pore phase. 

Two-phase composite media can be characterized by the n-point 
correlation functions, which give the probability of simultaneously finding 
n points with positions xl,  x2 ..... x n in one of the phases, say phase 1. This 
quantity is denoted by Sn(x~), where x n stands for the set {x~ ..... x,,}. For 
statistically homogeneous media S1 is simply the volume fraction of 
phase 1. These correlation functions are fundamental to the study of the 
conductivity (or, because of mathematical analogy, dielectric constant and 
diffusion coefficient) of suspensions, ~ 4~ fluid permeability (5'6) of porous 
media, rate constants associated with diffusion-controlled reactions in 
porous media, (7~ and the elastic moduli of composite materials. (8 10~ For a 
statistically inhomogeneous two-phase medium consisting of identical par- 
ticles dispersed throughout a matrix phase such that the location of each 
inclusion is fully specified by a position vector (e.g., spheres, parallel 
cubes, etc.), the S, may be systematically represented in terms of the n-par- 
ticle probability density functions pn. (1~'t2) [The p~(r n) characterizes the 
probability of simultaneously finding a particle centered in volume element 
dr1, another particle centered in volume element dr 2, etc.] For brevity, we 
shall henceforth state that pn(r n) characterizes the probability of finding 
any n particles with configuration r ". Lower order n-point "matrix" 
probability functions Sn, such as S~ = ~b (the matrix volume fraction), $2 
and $3, have been evaluated for various distributions of spheres in a 
matrix.(13 15) 

For the case of spheres distributed throughout a matrix, Torquato (16) 
has derived so-called nth-order cluster bounds on the effective conductivity, 
which depend upon the microstructure through the set of statistical quan- 
tities G(o ~), G~ 1~ ..... G(2~ ~. The G(nl)(xl;rn), which have been termed 
point/n-particle distribution functions, (161 characterize the probability of 
finding a point at x~ in the matrix phase and a configuration of n spheres 
with coordinates r n, respectively. As successively more statistical infor- 
mation is included, the bounds become progressively tighter. 

Other important descriptors of the microstructure of disordered two- 
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phase media involve information about the two-phase interface. Such quan- 
tities arise in transport problems in which the interfacial surface plays a 
major role in determining the effective transport properties, e.g., the rate 
constant associated with diffusion-controlled reactions and the fluid per- 
meability of porous media. We shall refer to statistical quantities that 
involve the two-phase interface as surface correlation functions. The sim- 
plest of such quantitites is the specific surface s (expected interface area per 
unit volume), a one-point correlation function. Doi  (17) has obtained 
bounds on bulk properties associated with diffusion-controlled reactions 
and flow in porous media in terms of not only ~b, s, and $2, but of a sur- 
face-matrix Fsm(Xl, x2) and a surface-surface correlation function 
F~s(xl, x2). The Fsm and Fss give the correlations associated with finding a 
point on the two-phase interface and another point in the matrix phase or 
on the interface, respectively. Higher order extensions of Doi's bounds 
involve successively higher order surface correlation functions, such as Fss~, 
F~sm, Fs . . . .  etc. For a bed of spheres, Weissberg and Prager (jSl have 
derived a bound on the permeability of such a system that depends upon ~b, 
s, a quantity closely related to a surface-particle correlation function F~p 
(which gives the correlation associated with finding a point on the particle 
matrix interface and the center of a sphere in some volume element), 
Gl~l(xl; r~), and G~2~)(xl; rl ,  r2). The Weissberg-Prager bound may be 
extended to include higher-order generalizations of these functions. (The 
G~ *~ obviously do not explicitly involve information about the interface, 
but, as shall be shown, are related to the other surface correlation functions 
described above.) A systematic means of representing and calculating sur- 
face correlation functions has heretofore been lacking and hence 
application of bounds that depend upon such information has been very 
limited/19t 

The purpose of this paper is to develop a general framework from 
which we may derive all of the aforementioned correlation functions (i.e., 
the S,,, G}, ~ I, F~, F~m, Fsp, F~s~, Fss m, etc.), which in the past have been 
treated separately, and their generalizations described below. This is done 
by introducing a very general n-point distribution function H n and by 
obtaining series representations of it, from which we may calculate various 
sets of distribution functions for nontrivial models of two-phase media. 
This analysis will enable one to study the relationship between the various 
sets of correlation functions that arise in bounds on effective properties and 
thus will aid in establishing the connection between the different bounds 
(e.g., finding the connection between conductivity bounds of Beran ~2) and 
of Torquato, (16) which incorporate the sets $1, $2, 33, and G(o 1), G] ~), G(2 I), 
respectively). Moreover, the formalism given here will enable one to 
calculate bounds on bulk properties of two-phase media with very high 
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accuracy. Finally, we note that the H,, also can be used to characterize the 
structure of liquids. 

In Section 2 we define certain n-point distribution functions Gn and H,, 
in terms of characteristic functions. It is shown that all of the statistical 
quantities described above are special cases of the functions G, and H,,; H ,  
being the more general of the two. Some properties of the G, and H,, that 
follow from their definitions are described. In Section 3 we derive two 
equivalent but topologically different series representations of both G, and 
H,, for general ensembles. For the special case of an equilibrium ensemble, 
the two series for the H,  are generalizations of the Kirkwood-Salsburg ~2~ 
and Mayer (2~} hierarchies for a certain equilibrium mixture of particles. The 
nature of these series enables us to obtain successive rigorous upper and 
lower bounds on the G, and H,,. In Section 4 we illustrate the applicability 
of this formalism by obtaining and presenting new results for the H,, and 
for bounds on transport properties that depend upon the Hn, for models of 
fully penetrable, totally impenetrable, and partially penetrable spheres. 
Among other results, we compute bounds on the permeability, for beds of 
impenetrable as well as partially penetrable spheres, with heretofore unat- 
tained accuracy. 

2. GENERAL n - P O I N T  D ISTRIBUTION F U N C T I O N S  

2.1. Def in i t ions in Terms of  Character ist ic  Funct ions 

The notion that the n-point matrix probability function Sn is trivially 
related to the probability density associated with finding a particular con- 
figuration of n spherical "solute" or "test" particles of zero radius in a 
mixture consisting of n such solute particles and N spherical "solvent" par- 
ticles of radius R (where n .~ N) has been profitably exploited by Torquato 
and Stell (12) to obtain series representations of the Sn. 

Here we shall be interested in more general mixtures and more general 
correlation functions. In particular, consider adding p spherical solute par- 
ticles of radii bl ..... bp, respectively, centered at positions xl,..., Xp, respec- 
tively, to a system of N equisized spherical solvent particles of radius R, 
centered at positions r~ ..... rN, respectively, where N is sufficiently large to 
justify a statistical treatment. It is important to emphasize that the solvent 
particles of radius R represent the actual inclusions in the composite. The p 
solute particles are capable of excluding the centers of the solvent particles 
from spheres of radii a~ . . . . .  a p ,  respectively, surrounding the solute particles. 
Therefore, for b i > 0, ai = R § bp For b~ = 0 we shall allow the solute par- 
ticles to penetrate the solvent particles, so that a r  (O<~ci<~R), 
where ai is the minimum separation distance between solute and solvent 
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Fig. 1. Schematic description of the solutesolvent mixture for solute particles having 
arbitrary, nonzero radii. The solvent particles of radius R (which represent the actual 
inclusions in the composite) and solute particles with radii b,> 0 are indicated by the shaded 
and by the unshaded particles, respectively. 

centers. Figure 1 schematically describes this solute-solvent mixture for 
b i >  0. For  simplicity, we let the solute particles be perfectly penetrable to 
one another, i.e., they are spatially uncorrelated with respect to each other. 
Note that the solute particles merely serve to probe the space D i and sur- 
face ~ available to them. In the simplest case of addition of a single solute 
particle of zero radius to the system of N inclusions, the space and surface 
(per unit volume) available to the solute particle are simply the matrix 
(or void) volume fraction ~b ( = 1 - ~ b p ,  where ~bp is the particle phase 
volume fraction) and specific surface s, respectively. 

For  the mixture described above it is desired to define a certain dis- 
tribution function G,,(xP; r q) in terms of certain characteristic functions 
described below. Gn(xP; r q) is the n-point distribution function that charac- 
terizes the correlation associated with finding p solute particles with con- 
figuration x p and q solvent particles with configuration r q, where n = p + q. 
Such quantities are generalizations of the solut~solvent  radial distribution 
function used in the scaled-particle theory of Reiss et al. (z2) If all the solute 
particles, for the case q = 0, have zero radius (i.e., bi = 0 for all i) and ai = R 
for all i, then the G,, defined above reduces to the n-point matrix 
probability function, where n = p ,  i.e., G , , (xn ;~ )=Sn(xn) ,  where 
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denotes the null set. If p = 1 and the radius of the solute particle is taken to 
be zero such that al = R, then Gn(Xl; r q) is equal to the point/q-particle dis- 
tribution function G~l)(x~; r u) defined in Ref. 16. We shall also be interested 
in defining and studying a still more general n-point distribution H,, 
(defined below), which not only characterizes the configuration of solute 
particles and a subset of the solvent particles, but describes the distribution 
of points on certain surfaces in the system. It is because of our interest in 
this latter quantity that requires us, as we shall see, to consider solute par- 
ticles with nonzero radii. 

The solvent particles are spatially distributed according to the N-par- 
ticle probability density PN(rN), which characterizes the probability of 
finding the solvent particles 1, 2 ..... N with configuration r N, respectively. 
P;v is assumed normalized to unity. Note that PN is perfectly general, i.e., 
PN may describe an equilibrium ensemble, as well as a nonequilibrium 
ensemble. The n-particle probability density described above is related to 
PN through the following relation: 

N, ; 
p, , (r")-  (N_n)~. PN(r N) dr u " (2.1) 

where dr N "-dr , ,+~ . - .dr  N. The ensemble average of any many-body 
function F(r N) is simply given by 

(F(r  N) ) = f F(rN) Px(r N) dr N (2.2) 

It is important to note that the solvent particles are, in general, dis- 
tributed with arbitrary degree of impenetrability. The degree of 
impenetrability is characterized by some parameter 2 whose value varies 
between zero (in the case of randomly centered spheres and thus com- 
pletely uncorrelated, i.e., "fully penetrable spheres") and unity (in the 
instance of totally impenetrable spheres). Examples of sphere distributions 
involving intermediate values of 2 include the permeable-sphere (PS) 
model (231 and the penetrable-concentric-shell (PCS) modelJ 24) In the PS 
model, spherical inclusions of radius R are assumed to be noninteracting 
when nonintersecting (i.e., when r > 2R, where r is the distance between 
sphere centers), with probability of intersecting given by a radial dis- 
tribution function g(r) that is 1 - 2, independent of r, when r < 2R. In the 
PCS model (depicted in Fig. 2) spheres of radius R are statistically dis- 
tributed throughout space subject only to the condition of a mutually 
impenetrable core of radius 2R, 0 ~< 2 ~< 1. Each sphere of radius R may be 
thought of as being composed of an impenetrable core of radius 2R, 
encompassed by a perfectly penetrable concentric shell of thickness 
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Fig. 2. A computer-generated realization of a distribution of disks of radius R - a/2 (shaded 
region) in a matrix (unshaded region) in the PCS model. 124~ The disks have an impenetrable 

core of diameter ,i~ indicated by the smaller, black circular regions. Here 2 = 0.5 and the par- 
ticle volume fraction @ = 1 - ~  = 0.3. 

( 1 - ) . ) R .  Interpenetrable-sphere models enable one to study the effect of 
the degree of connectivity of the particle phase on the transport properties. 
The degree of connectivity of the individual phases may greatly influence 
the transport properties of two-phase media, particularly when the phase 
property values differ significantly. The PS and PCS models may serve as 
useful models of consolidated media, such as sandstones and other rocks, 
and sintered materials. 

It is desired to define the G,, and H,, in terms of characteristic 
functions for the general case of a mixture of p solute particles of radii 
bl ..... bp, respectively, and N solvent particles of radius R. Since the ith 
solute particle is capable of excluding the centers of the solvent particles 
from spheres of radius ai (where for bi > 0, ai = R + bi and for b~ = 0, a~ = 
R - c i ) ,  then it is natural to associate with each solute particle i a sub- 
division of space into two regions: the space available to the ith solute par- 
ticle (i.e., the space outside N spheres of radius ai centered at r N) Di, and 
the complement space D*). The entire system is a domain of space 
D ( = D ~ +  D*) of volume V. We define the characteristic function 

1, x E D  i (2.3) 
I (x;a~)= 0, otherwise 
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This characteristic function can be related to the positions of the solvent 
particles in the following manner: 

N 

I(x; a i )=  ~ 1-t -rn(yj;  a~)] (2.4a) 
j = l  

N N 

= 1-- ~ m(y/;ai)+ ~" m(yj;ai)m(yk;ai)  
j= 1 ,]< k 

N 
-- ~ m(y/;ai) m ( y k ; a i ) m ( y / ; a i ) + ' "  (2.4b) 

j < k < l  

where 

1, y j<a~ (2.5) 
m(yj; ai) = 0, otherwise 

and y i =  Ix -v i i .  The nth sum in Eq. (2.4b) is over all distinguishable n- 
tuplets of "interaction" spheres (i.e., spheres of radius ai centered at r N) and 
thus contains N ! / ( N -  n)! n! terms. It arises because n-tuplets of interaction 
spheres may happen to simultaneously overlap. 

Let ~ denote the surface between Di and D*. Then the characteristic 
function of ~ ,  M(r; ai), may be obtained from Eq. (2.4) by differentiating 
- 1  with respect to a~: 

c3I(x; ai) 
M(x; a,) - (2.6a) 

Oai 

N N 

= 2 6 ( a i  YJ) ~ ,  b ( a i  YJ) m(Yk; a i )  
j =  1 j < k  

N 

- ~, 6 (a i -  Yk) m(y/; a,) + "" (2.6b) 
i<k  

where 6 is the Dirac delta function. Clearly, M(x; a~) is a function that is 
zero everywhere except when x describes a position on 5~. Equations (2.4) 
and (2.6) generalize corresponding relations derived by Torquato and 
Stell (~l) and by Torquato and Stell (25) and Chiew and Glandt, (26) respec- 
tively, for the special case in which all b~ = 0 and all a~ = R. The ensemble 
averages [cf. Eq. (2.2)] of I and M are simply the volume fraction ~b~(a~) 
and specific surface s~(ai) associated with the space D~ and the surface ~ ,  
respectively. It is only when all b~ = 0 and all a~ = R that ( I )  and ( M )  are, 
respectively, equal to the volume fraction of matrix q~ and the specific sur- 
face of the particle matrix interface s. 
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More  generally, we have 

G,,(x"; ~ )  = I(xi ;  a, (2.7a) 

= Correla t ion associated with finding a point  at 
Xl in D1, a point  at x2 in Dz, etc. (2.7b) 

= Correla t ion associated with finding solute particles 
1,..., n of radii b l ..... b,,, respectively, with 
configurat ion x ' ,  respectively (2.7c) 

= Probabi l i ty  that n spheres of radii a l,..., a,,, 
respectively, are empty of the centers of 
solvent particles (2.7d) 

We are actually interested in defining the still more  general n-point 
distribution function G,(xP; r q) in which a subset of the n points refer to 
solute particles and the remaining points refer to solvent particles. Given 
(2.7), it follows that 

N~ 
G"(xP; rq) = ( N -  q)--------~, f I [  I(xi;  ai) eN(r  N) dr N-v (2.8a) 

P 

i=1  

= Correla t ion associated with finding a solute particle 
of radius b 1 centered at x 1 ,---, and another  solute 
particle of radius bp centered at % ,  and of finding 
q solvent particles with configurat ion r q, where 
n = p + q  (2.8b) 

The dependence on r q arises because the integrations are over all solvent 
particles not  included in the subset of the q solvent particles. The factor 
N!/(N-q)! in Eq. (2.8) accounts  for the indistinguishability of the solvent 
particles. Note  that  for the case q = 0 ,  Eq. (2.8) reduces to Eq.(2.7).  
Moreover ,  in the instance p = 0, G~, is identical to the n-particle probabil i ty 
density p ,  '[i.e., Eq. (2.8) reduces to Eq. (2.1)]. 

Employing Eqs. (2.6a) and (2.8), it is clear that  

0 0 
H,,(xm; x p - m. r q) = ( _ 1 )m . . .  G,,(xp; r q ) 

' ~ a  I 63a m 

f I O l  1[ f l  
_ N! M(xi; ai) 

(N-q)!  i ,= m+l 

• PN(r N) dF N-q 

(2.%) 

I(x~; ai)l  

(2.9b) 
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Correlat ion associated with finding the center 
of a solute particle of  radius b~ at X l on ~ ..... 
and the center of a solute particle of radius b m 

at xm on 5fm, and the center of a solute 
particle of radius bm +1 and x,, + 1 in Dm+ 1,..., 
and the center of a solute particle of radius bp 
at Xp in Dp, and of finding any q solvent 
particles with configurat ion r ~, where 
X p - m ~ "  { X m +  1 ..... Xp}and n = p + q  (2.9c) 

The n-point  distribution function H,, is new and is the most  general 
statistical quant i ty  that we shall deal with in this paper. F rom this single 
function one can obtain all of the correlat ion functions described in the 
introduct ion (by setting b i - - 0  and as=R,  i= 1,..., p), i.e., the n-point 
matrix probabil i ty functions, (1~) the surface-surface and surface-matr ix 
correlat ion functions ~7~ and their generalizations, the surface particle 
correlat ion function 2 and its generalizations, and the point/n-particle dis- 
tr ibution functions. (16'~sl This is the first time this connect ion has been 
noted. Note  that in the case of a statistically homogeneous  system, Pu(r x) 
is invariant under  translat ion and thus implies that  the G,, and H,, will be 
functions of  relative positions. 

2.2. Some Properties of the n -Poin t  Functions 

In s tudying the asymptot ic  properties of G,, and H,,, it will suffice to 
focus our  at tention on Hn alone, since G,, is a special case of H n, i.e., 
Hn(xm; X p m; r q) : Gn(XP; r q) when m = 0. 

Since H n is a joint  distr ibution function, one has the normalizat ion 
condit ion 

f H,,(x , dr q - 
N! 

m . p m . - -  � 9 1 4 9  i m p i ~  . x , r  q) ( N _ q ) ! r t A x  ; x  , ~ )  (2.10) 

where q = n - p .  This is arrived at by integrating Eq. (2.9b) over the 
positions r q. 

2Weissberg and Prager Ilsl actually define the quantity Rl~l(yl;~2), which gives the con- 
ditional probability that if Xl is on the surface of a sphere centered at rz and ~2=y2/]y21, 
then there will be a sphere centered at rz. It is easily shown that 

, f  =, a FG2(x,;r,)7 

where d~2 denotes an element of solid angle on sphere 2, s is the specific surface, F~p(y~) is 
the contribution to F,p (or H2) when x~ is on the surface of a sphere and r~ describes the 
center of another sphere, and e(yl; R) is defined by (3.1b). 
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We now examine the asymptotic behavior of the H,,. The set 
( x r n ;  X P - - m ;  r q) is partitioned into L = L ( c 0  disjoint subsets, where {c~} = 
{ct~; ~2;...; ~L} is any partition of the aforementioned set, {c~,} is the ith sub- 
set, and ns is the number of elements in {c~}. The subset {c~} is in turn par- 
titioned into three subsets, i.e., {~I~);c~12/;~3t}, where {~I ~t} contains 
elements of the subset x% {c~ 2)} contains elements of the subset x p % and 
{~3)} contains elements of the subset r q. Let nl/), j =  1, 2, or 3, denote the 
number of elements in {~/)}. Then ~ = 1  n~ 1)=m, Z~_~ nl21=P - m ,  and 
Z~= ~ nl 3~ = q. Let all of the relative distances between the ni elements of the 
subset {c~} remain bounded, and let F~ be the polyhedron with n~ vertices 
located at the positions associated with the subset {c~}. We denote the cen- 
troid of the F~, by R~. Assuming no long-range order, we have that 

L 
lira H,,(xm;xp-m;rq) = [1 H,,,(c~I~/;~21;~131) (2.11) 

all R/k ~ oo i 1 

where Rjk= [Rk--R/I is the relative distance between the centroids of F~j 
and F~k, such that 1 ~< j < k ~< L. 

From Eq. (2.9b) it follows that when r + 1 of the elements (points) of 
x"  coincide and t + 1 of the elements (points) of x p .... coincide, then 

H,(x" ;  x p "; r q) --+ H ..... ,(ill ;f12; rq) (2.12) 

where {fl~ } and {fl:} denote the subsets associated with the elements of x"' 
and x p -% respectively, that do not coincide. 

In the PCS model,/241 H,,(x"; x p .... ; r  q) is identically zero for certain 
r q. In particular, we have 

H,,(xm; x p-m; r q) = 0 if I r i -  r/[ < 22R (2.13) 

for a n y i e j s u c h  that l~<i~<qand l ~ j ~ < q .  

3. R E P R E S E N T A T I O N S  OF G. A N D  H .  

It is desired to derive series representations of both G~ and H,, for the 
mixture described in Section 2. Once the series representation of the G,, is 
derived, we may obtain the corresponding expression for the H,, from 
definition (2.9a). We note that, in general, the solvent particles are dis- 
tributed with arbitrary degree of penetrability. Furthermore, the results 
obtained here are not restricted to three-dimensional spherical particles 
and so they hold for rods in one dimension and circular disks in two 
dimensions. The formal results obtained here are also easily extended to 
dispersions of spheres (disks) with a size distribution and to distributions 
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of equisized inclusions, whose configuration is completely specified by cen- 
ter-of-mass coordinates (e.g., oriented ellipsoids, cubes, squares, etc.), by 
appropriately generalizing the characteristic functions /, Eq. (2.3), and M, 
Eq. (2.6). This, however, is not done here. We now proceed to obtain two 
equivalent but topologically different representations of the G,, and the H,,. 

3.1. Kirkwood-Salsburg Representation 

The product of the characteristic functions [If'_- 1 I(xi; ai) may be writ- 
ten as follows: 

I(• = e(ylk;al) [1-m(Yl~;al)] 1-I I(• 
i = l  1 )k-k=q+l i = 2  

= e(Y,k;al) I(x,;ai)-- ~ m(yu;al) l-] I(x, ;a,)  
k = l  i / = q + l  i = 2  

+ ~ m(yu;a,)m(ylk;a,) I(• . . . .  (3.la) 
j = q +  1 i =  2 

. / <  k 

0, yo<ai (3.1b) 
where e(yij; a~)= I -m(y~i; a~)= 1, otherwise 

and Yij = Ixi rjt. Here we have made use of Eq. (2.4b). Note that attention 
here is focused on solute particle 1 and on q of the solvent particles. Com- 
bination of Eqs. (2.8) and (3.1) gives 

Gn(xP; r q ) 

I~q=l e(y~k; al) 

= G ,  l(x p i ;r  u) f ( N - q -  1)( m(yl.q+,;a,) 

P 

X ]~  I ( X i ;  ai) PN(r N) dr N q 
i = 2  

N! f 4 ( N - - q - - 2 ) [ 2 !  m(Ylq+l;al)m(Y~'q+2;al) 

P 
x 1-I I(x/; al) PN(r x) drN q . . . .  

i = 2  

(3.2) 

In general, for a statistically homogeneous medium, we have 

Gn(xP; r q) = ~ ( - -  1 )s v,,~KS~s~("P'~.., ~rq~,, n = p + q 
s = 0 

(3.3) 
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where 

G K S ( s ) ( X P "  r q )  

�9 f q + s  =FI~'=le(ylk'al)s! G,~+s I(xP-'; rq+,) H 
j = q +  I 

and 

m ( Y l j ;  a 1 ) dr/ ( 3 . 4 )  

q 

GKS(~ l( xp 1; rq) l~ e(ylk'al) (3.5) 
k = l  

It is important to note that Eq. (3.3) applies to equilibrium as well as 
nonequilibrium ensembles. Interestingly, for an equilibrium distribution of 
q solute particles and N solvent particles, in the limit of infinite dilution of 
each solute species, Eq. (3.3) is isomorphic with the Kirkwood-Salsburg 
representation of the n-point distribution function associated with such a 
liquid mixture. For this reason we refer to Eq. (3.3) as the Kirkwood-  
Salsburg representation of the G,,. Hence, for an equilibrium distribution, 
Eq. (3.3) could have been derived using the general set of integral equations 
for a mixture derived by Baer and Lebowitz ~27/ (of which the Kirkwood-  
Salsburg series is a special case) if the following correspondence is made: 

lim P~(xP; rq) 
, : ~ o  I~ , "=  l z (a 
z [i) ~ 0 

all i 

- G,,(xP; r q) (3.6) 

where p") and z (~ are the number densities and fugacities associated with 
the ith solute species ( i=  1 ..... p), pn(xP;  r q) is the n-particle probability 
density associated with finding the solute particles with configuration x p 
and the solvent particles with configuration r q, and the limiting process 
specifies that p(~ and z(i/--+0, for i =  1,..., p. The left-hand side of 
Eq. (3.6) comes from the left-hand side of Eq. (3.9) of Ref. 27. For a 
statistically homogeneous medium (i.e., in the thermodynamic limit, 
N--* 0% V ~  oo such that p =N/V remains bounded), Eq. (3.6) leads to 

where 

and 

p 

Pq I] (~i(a:) g,(xP; rq) = G,(xP; rq) (3.7) 
i = l  

p,(xP; r q) 
g"(xP; rq) = P I-Ii= 1 q p p.I  (3.8) 

~b/(ai)= lim p(il 
l i )~  Z (i) O(,) O 

(3.9) 

822/45/5-6-6 
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and p is the number density of the solvent particles. Note that when bi = 0 
and a i=  R, ~b~(R) is simply the fraction of the space available to the ith 
solute particle, i.e., the matrix volume fraction ~b. 

The connection between statistical mechanical hierarchies and n-point 
distribution functions that arise in composite-media problems was first 
recognized by Torquato and Stell, (121 who showed that the Mayer-  
Montroll and Kirkwood Salsburg equations for n point solute particles and 
N solvent particles become equations for the n-point matrix probability 
functions S,,. When q = 0 ,  bs=0, and a~=R ( i=  1,..., n), Eq. (3.3) reduces 
to the Kirkwood-Salsburg representation of the S,, derived in Ref. 12. 

Combining Eqs. (2.9) and (3.3) gives a series representation of the new 
and more general function H,, : 

m. ~ H,, (X ,X p m;rq), n = p + q  (3.10) H,,(x ,x  p .... ; r  q)= ( - l ) S  KS(,) m. 
s 0 

where 
0 0 

= - - a , ,  (x , r  ) (3.11) HKSl'l(xm; xP m; r q) ( -  1)m _ _  KS(s) p. q 
c3al ~?am 

The G Ksc'l are given by Eq. (3.4). Although (3.10) for the H,, is more 
general than (3.3) for the G,,, we refer to it as the Kirkwood-Salsburg 
representation of the H,, because it is obtained from Definition (2.9a) and 
Series (3.3). 

3.2. Mayer Representation 

The product of the characteristic functions I~f= ~ l(xi; ai) may also be 
rewritten in the following manner: 

I(x~; a , )=  e(y~/; ak) [1 --rn(yk~; ak)] 
i = 1  [ k = l  l = q + I k = l  

= e(ykt; ak) 1 -- E m(P)(xP; U) 
/ = l k = l  i = q + l  

+ ~, m(Pl(xP;ri) mtP)(xP;rJ) . . . .  (3.12) 
i = q + l  

i < /  

where 
P 

mlP)(xP;rj)= 1 - I-[ [1 -m(y~j;a,)] (3.13) 
i = 1  

In arriving at Eq. (3.12), we have employed Eq. (2.4b). Unlike the previous 
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case, however, attention here is focused on all p solute particles and q 
solvent particles. Equations (2.8) and (3.12) lead to 

Gn(xP;  r q) 

I ~ / =  I I ~ f f = l  e ( Y k t ;  a t , )  

=pq(r q) - f  m(P)(xP; rq+ l) Pq+ t( rq+ l) drq+ 1 

1 +~..fm(P)(xP;rq+l)m(P)(xP;re+z)Pq+2(rq+2)drq+l drq+2 . . . .  

(3.14) 

In general, for a statistically homogeneous medium, 

G,,(xP;rq)= ~ (--1)~G,M,(")(xP;rq), n=p+q (3.15) 
s = 0 

where 

I~)'= 1 H~=I  e(ykl; a~.) 
G"MC")(x P; rq) = st 

and 

x f pu+,(r q+') H rn(m(xP;r/) dr/ (3.16) 
j = q §  

q P 
G,,Mr~ rq)--Pq(rq) ~ [ I  e(yk,; a~) (3.17) 

/ = l k = l  

Equation (3.15) is a different and new representation of the G,,. As in 
the previous case, it applies to general ensembles. In the context of liquid- 
state theory, an expression of this type was derived by Mayer (28t for a 
single-component fluid in thermal equilibrium. Accordingly, we refer to 
Eq. (3.15) as the Mayer representation of the G,,. This is the first time the 
Mayer representation has been used in the context of composite media 
problems. Note that unlike the sth term of Eq. (3.3), which involves 
integrands containing the G,,+, 1, the corresponding term in Eq. (3.15) 
involves integrands containing the (q+s)-part icle probability density 
pq+,(r q+') associated with the solvent particles only. Since the p,, are in 
principle given information, the Mayer representation (3.15) will prove to 
be superior to the Kirkwood-Salsburg representation for the purposes of 
exactly evaluating the G,,. However, the latter representation provides a 
means of bounding the G,, that is more powerful than the former (see Sec- 
tion 3.3). 
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For  an equilibrium distribution, Eq. (3.15) could have been derived 
employing the general results of Baer and Lebowitz 127) and Eqo (3.6). Note  
that when q = 0, b~ = 0, and at = R (i = 1,..., p), the Mayer  representat ion of 
the G,, become the M a y e r - M o n t r o l l  equat ions for the S,  derived by Tor-  
quato and Stell. 1~2) Moreover ,  when p = 1, b~= 0, and a~ = R (i = 1 ..... p), 
Eq. (3.15) reduces to the Ki rkwood-Sa l sburg  equat ions for the point/n-par-  
ticle distribution functions 3 obtained by Torquato .  (~6) 

Combina t ion  of Eqs. (2.9a) and (3.15) yields what  we refer to as the 
Mayer  representat ion of the H,,: 

H.(xm; xP--m; r q) = ~ ( -- 1 )~' H,,M/s/(xm; x p-  m; rq), 
S = 0  

where 
0 

HY(~)(x"; x P -  % rq) = ( - 1)m 1c3a--"" " 
@m 

n = p + q  (3.18) 

- -  G~C~/(xP; r q) (3.19) 

The G,, MI~) are given by Eq. (3.16). Note  that  (3.18) is new and more general 
than (3.15). 

3.3. Bounding Properties 

It is well known that  hierarchies of the type given by (3.3) and (3.15) 
allow one to r igorously bound  the distr ibution function)12.271 This proper ty  
was exploited by To rqua to  and Stell (12) to yield bounds on the S,,. In par- 
ticular, here we have 

and 

}>~ {QKS(Z) for l odd (3.20) 
G,  ~< for Ieven  

> ~ M(~I for l odd (3.21) 
Gn ~ ( Q "  for l even 

where the Q(~Z) are the partial  sums 

/ 

Q~S(,) = y '  ( _  1)" G, Ksl~) (3.22) 
s = 0  

3 Note that in this instance comparison of Eq. (3.15) for G2(xl; rl) at YI~ = Ixt -r~l = R and of 
Eq. (3.18) for H~(xl)=s (al =R)=s,  for an isotropic system, yields s=4~RZG2(yli = R). 
Since G2(y~ = R)/p takes on its maximum value of unity for the case of totally impenetrable 
spheres and its minimum value of q6=exp(-p47rR3/3) for the case of fully penetrable 
spheres, it may be regarded as the fraction of exposed interface area. 
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and 
/ 

QMI,) = ~ ( _  1)" G,M, (') (3.23) 
s = 0  

Here G~ s~sl and G MI'I are given by Eqs. (3.4) and (3.16), respectively. 
Similarly, from Eqs. (3.10), (3.11), and (3.18)-(3.21), we find for 

even m 

and 

and for odd m 

for l odd 
H~; >~ ~ W~ s~l) (3.24) 

J ~< ( for l even 

H ~ ~> ~ W M(') for l odd (3.25) 
" j  ~ [ " for l even 

and 

}>~ { for /even (3.26) 
H,, ~< WI Ks~r for l odd 

where the W}[ I are the partial sums 

and 

for l even 
(3.27) 

for l odd 

/ 

W,, Ks('' = y '  ( - 1)" H,~ sl'l (3.28) 
s = 0  

/ 

W M(z)= ~ ( -  1)" H M(sl (3.29) 
s = 0  

The H, Ks('l and H MI'I are, respectively, given by Eqs. (3.11) and (3.19). 
The fact that we have a succession of upper and lower bounds on Gn 

and H,  does not necessarily imply that G(, s) and H~ 1 uniformly decreases in 
absolute value as s increases, i.e., that the bounds are successively better 
and better. However, there will be instances in which the series for G,z and 
Hn will be truncated (i.e., for certain distributions of solvent particles there 
exists some s > k > 0 such that G}, s/= H~ s) = 0 for all s > k). 

For example, consider the series for the G, for a system consisting of p 
point solute particles (where a i=  R for all i) and N totally impenetrable 
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spherical solvent particles of radius R. For such a medium, the terms of the 
Kirkwood-Salsburg infinite series (3.3) are identically zero for all s > 1, i.e., 

G.(xP;rq)=G,, l(XP-~;rq)-f G.(xP-1;rq+l)m(yl,q+l;R)drl (3.30) 

This follows since the product 

m(yl,q+ 1; R) m(y~,q+ 2; R) Gn+ ~_ ~(x p- 1; rq +.,) 

appearing in the sth term in (3.3) is identically zero for all s >  1, since 
re(y; R) = 0 for y > R and G.(xP; r q )  = 0 for all I r i -  rjl < 2R, for any i a n d j  
such that 1 <.i<j<.n. Similarly, the terms of the Mayer series (3.15) are 
identically zero for all s > p since the product 

q + ,s" 

[q+s(rq+s) I-[ m(P/(xP;r/) 
/ = q + l  

appearing in the sth term in (3.15) is identically zero for all s >  p, i.e., 

p 

G,,(xP; r q) = ~ ( -  1)" GM(~)(xP; r q) (3.31) 
s = 0 

For such a system, the corresponding series for the H,, truncates after the 
same number of terms. 

The Kirkwood-Salsburg representation provides a means of bounding 
the distribution functions that is more powerful than the Mayer represen- 
tation. To illustrate this point, we examine the bounds on G2 and G3 for a 
mixture of point solute particles (where a i=  R for all i) and N totally 
impenetrable solvent particles. When n = 2  the Kirkwood-Salsburg and 
Mayer representations are identical and hence application of either (3.20) 
and (3.21) yields 

G2(x 1 ; r,)~< p~(r~) (3.32) 

and 

Ge(x, : rl) = p~ ( r l ) -  f p2(r~, r2) rn(y~2; R) dr 2 (3.33) 

For homogeneous systems, p l(rl) is simply the number density p. For 
n = 3, the two series representations are not topologically identical. The 
Kirkwood Salsburg inequality of (3.20) gives 

G 3 ( x i ,  x 2 ;  r l )  ~ G 2 ( x 2 ;  r l )  (3.34) 
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and 

G3(x, ,xz;r l )=G2(x2;r l ) - f  G3(x2;r~,r2)m(yx2;R)dr2 (3.35) 

On the other hand, the Mayer inequality (3.21) yields 

G3(xl, x2; rl) ~< pl(rl 

G3(x1, x2; rl) >/pl(rl) - f P2( rl ,  r2) m(2)(Xl, X2; r2) a~ 2 

(3.36) 

(3.37) 

G3(xI, x2; rl) = p l ( r l ) -  f p2(rl, r2) m(2/(xl, x2; r2) 6/1"2 

1; 
+ ~ P3(rl, r2, r3) m(2)(Xl, • r2) 

x m(2)(xl, x2; r3) dr 2 dr 3 (3.38) 

Employing inequality (3.32), it is clear that (3.34) provides a better upper 
bound on G3 than does (3.36). When x 1 coincides with x2, (3.34), unlike 
(3.36), is exact. When Xl, x2, and rl are far apart from one another in a 
homogeneous system, G2 --, ~bp and G3 -~ ~b2p [cf. Eq. (2.11)], and hence, 
although the upper bound (3.34) is not exact in this case, it is sharper than 
(3.36). Relation (3.35), which is exact, obviously provides a better lower 
bound on G3 than does inequality (3.37). In general, for any n, the 
Kirkwood-Salsburg, rather than the Mayer, representation will provide 
sharper bounds on the distribution function. 

4. APPLICATIONS 

In the previous section we derived two different series representations 
of the general n-point distribution function H,,. We now have a means of 
systematically calculating the H n and, hence, bounds on effective properties 
that depend upon Hn, for dispersions of spheres distributed with arbitrary 
degree of impenetrability 2. In many applications we shall be interested in 
H,, in the limit that the radii of the solute particles become zero such that 
a i=  R, for all i. For example, in this limit, the n-point matrix probability 
function (11) and the point/q-particle function (16'181 (which actually is an 
n-point distribution function, n = 1 + q) are given respectively by 

S,,(x'Z) = H,,(~Z~, x"; ~ ) =  G.(x"; ~ )  (4.1) 
and 

G(ql)(xl;rq)=Hn(~5;xl;rq)=G,,(xl;rq), n = l + q  (4.2) 
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Similarly, in this limit, the two-point surface correlation functions (17'~8) are 
given by 

fsm(Xl, x2) = g2(xl ; x2; ~ )  (4.3) 

Fss(Xl, x2)=  H2(xI, X 2 ; ~ ;  ~ )  (4.4) 

Fsp(Xl, rl) = O2(x I ; ~ ;  r l  ) (4.5) 

Three-point surface correlation functions (e.g., F~m, F~p, Fsmp, etc.) and 
their n-point generalizations can be obtained from the Hn in a similar 
fashion. 

In some cases, the sizes of the solute or "test" particles that one wishes 
to introduce in a porous medium are not always negligible compared to the 
pore size and hence the distribution functions will depend upon the relative 
size of the particle and poreJ 29) Our general series representations of the 
H,, (derived in the previous section) are clearly capable of characterizing 
the microstructure in such instances, since the bi are, in general, nonzero. 
Such generalized quantities have a particularly simple application in the 
theory of gel chromatography. (3~ 

In this section we shall apply the general formalism of Section 3 by 
obtaining and evaluating series representations of various limiting forms of 
the H ,  and illustrating how such information is used to compute bounds 
on effective properties of porous and other composite media. We begin by 
briefly describing bounds on effective properties. This is followed by some 
specific results for models of fully penetrable spheres ()~=0), totally 
impenetrable spheres (2 = 1 ), and spheres distributed with arbitrary 2. 

4.1. Bounds on Transport Properties 

Doi's upper bound on the fluid permeability k of an isotropic porous 
medium is given by 

k ~ f/ x dx IFmm(X)-2~s fsm(X).+-~2 Fss(x)l (4.6) 

where it is to be recalled that ~b and s are the porosity and specific surface, 
respectively. Doi actually referred to the matrix phase as the void phase. 
(Note that for statistically isotropic media, the two-point functions depend 
only upon the relative distance x between the two points.) In Doi's 
language the correlation function Fmm is simply what we have been refer- 
ring to as $2. Doi has suggested a means of obtaining an infinite hierarchy 
of bounds on k from the variational procedure he employs. For example, 
the next bound in the hierarchy involves not only one-point (~b, s) and two- 
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point (Fmr~, Fsm, Fss) information, but three-point information 
(Fmmm, Fsmm, Fssm,Fsss). 

It is instructive to express explicitly the two-point quantities that arise 
in Doi's bounds in terms of the Pn, which, in principle, are known quan- 
tities for the ensemble under consideration. Using the Mayer representation 
of the Hn, Eqs. (3.16), (3.18), and (3.19), combined with Eqs. (4.1), (4.3), 
and (4.4), we have for a system of (possibly overlapping) spheres 

Fmm(Xl'X2)= ~' (--1)SsT JlPs(r') It[ m(2)(Xl'x2;r/)dr/. -~ (4.7) 
s=O " . /=1 =a2=R 

1,  s 

F s m ( X l '  X 2 ) -  t~al s S f  

x f p,(r ~) l~I m(2'(xl,x2;ri) drj] (4.8) 
j =  1 al =a2 = R 

and 

0 [~o(-1)s 
F s s ( X , ,  x 2 )  =/~a'-"~ ~a-~ s s !  

x f p,,,(r s) FI mi2)(Xl, x2;rj) drj I (4.9) 
j =  1 a I = a 2 =  R 

Representation (4.7) for Fmm was first derived by Torquato and Stell/11~ 
However, representations (4.8) for Fsm and (4.9) for Fss are new and hence 
provide a means of calculating them and the Doi bound on k for the first 
time for a system of spheres distributed with arbitrary degree of 
impenetrability. 

The Weissberg-Prager ~ upper bound on k was derived using a 
variational principle different than the one employed by Doi, and, as a 
result, the statistical quantities that arise in the former (~b,s, GIll=G2, 
G(21)=G3) and a quantity closely related to Fsp (described in footnote 2) 
are, in general, different than those that arise in the latter. The Weissberg- 
Prager variational principle can also be extended to yield an infinite 
hierarchy of bounds that involve generalizations of the statistical quan- 
titites that are involved in the Weissberg Prager bound. A natural question 
which comes to mind is: What is the connection between the Doi and the 
Weissberg-Prager hierarchy of bounds on k? Obviously, in order to answer 
this question, one must quantitatively understand the relationship between 
the two different sets of statistical quantities that arise in the bounds. Such 
an understanding is provided by the general formalism described in Sec- 
tion 3. 
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In what follows it will be useful to express explicitly the series 
representations of the GCq ~) and of F~p. Combination of Eqs. (3.16), (3.18), 
and (3.19) together with Eqs. (4.2) and (4.5) gives 

G/ql'(xl"r q) = l~I e(ylfi al) ~ ( - 1 ) s  
/ = 1  s - - O  

q + s  

X f flq+s(r q+s) I] m(yi]; al) dr/ 
and s = q + ~ ~, = R 

(4.10) 

0 [e(yl .al)~ ( - 1 ) '  
Fsp(XI' r2)= -- 0a--~ ' s( 

s = 0 

~, l §  1 x j p l+ , ( r  '+s) ~ m(yx/;a,)dr/ (4.11) 
. / = 2  a I = R 

Representation (4.10) was first obtained by Torquato. 116) Representation 
(4.11) for F~p(xl,r2) is new, however. Recall that the latter gives the 
correlation associated with finding a point at X l on the two-phase interface 
and a sphere center at r 2. 

Torquato (~6) has recently derived first-order cluster bounds on the 
effective conductivity cr of media composed of equisized, partially 
penetrable spheres of conductivity a2 distributed through a matrix of con- 
ductivity ~ ~: 

I t l t  q~2r/2(l/0"2 -- 1/0-1)2 l O. e I (O ' )  
AlV, <" Az~rl + B2(o2 - o-1)/ 

(4.12) 

Here the Ai=  Ai[r P2] and Bi=  Bi[r G] 1), G~21)] are integrals that involve 
the statistical quantities given within the brackets, and r/= p47zR3/3, where 
R is the radius of a sphere. Torquato (16) also derived nth-order cluster 
bounds on G, which depend upon the sets Pl, Pz,-.., P2,, and G(01) (= r  
G]I),..., Gr ). It should be noted that the cluster bounds are the conduction 
analogue of the Weissberg-Prager-type bounds on k. Beran (2) has derived a 
different set of bounds on o-e, which is applicable to general two-phase 
media: 

- -  1)2] [ ( 1 )  r ~__ ~)2(1/~2 =! / r71)2]-  ' rye ~< [ (~7 } . . . . . . .  
Cl/al + Dl(1/o-2- 1/al)J  Czrrl + D 2 ( o z -  rrl)J 

(4.13) 
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Here the C~ = C~[S1, $2] and Di = D~[S~, $2, S31. Although the Beran and 
Torquato bounds have a similar form, they involve different statistical 
quantities. Are the Beran and Torquato  bounds ever equal to one another? 
Such a question can only be answered by establishing the connection 
between the G(, ~1 and the S,  using the formalism of Section 3. The answer 
to this question is discussed in Section 4.3. 

4.2. Results  for  Fully P e n e t r a b l e  Spheres  

The Mayer representation of the n-point distribution functions is the 
most natural one to use when it is desired to calculate them exactly. Con- 
sider the evaluation of G,, and H,, for a mixture of p solute particles of radii 
b~,..., b r, respectively, and N solvent particles that are fully penetrable to 
one another (i.e., spatially uncorrelated). For  such a system, we have 

p,,(r") --. p '' (4.14) 

Upon use of Eq. (3.15), we find 

G,,(xP; r q) pq+2 
= p q - - p q + ' V p ( x P ) + ~  l/~p(x p) . . . .  

H~'=, 1-I~=, e(yk~; a~) z . ,  

=pqexp[ -pVp(xr ) ] ,  n = p + q  (4.15) 

where 

Vp(x P) = Union volume of p spheres of radii a l,..., ap, 
respectively, centered at x 1,..., xp, respectively 
(where it is to be recalled that a, = R + bi 
for bi > 0 and ai = R - ci for b~ = 0; 
ai being the minimum separation distance 
between solute and solvent centers) {4.16) 

For the case of point solute particles with a i=  R and p = 1, Eq. (4.15) 
reduces to the poin t / (n-1) -par t ic le  distribution function for fully 
penetrable spheres derived by Torquato. (~61 In the instance of point solute 
particles with ai=R, i= 1,..., p, and q = 0 ,  Eq. (4.15) is identical to the 
n-point matrix probability function S,, for fully penetrable spheres derived 
by Torquato and Stell. (14) 

In general, for this model, the n-point distribution function associated 
with finding the centers of m solute particles of radii bl,..., bm at x m on the 
surfaces ~ ..... ~ ,  respectively, p - m  of the solute centers of radii 
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bm + I ,--., bp at x p rn in Dm+ 1 ..... Dp, respectively, and q solvent centers of 

3 FI ~ e(Ykl;a~) 
~amt=l~=l  

radius R at r u is given by 

Hn(xm; xP--m; r q) 

= (-- 1) m pq exp[ - -pVp(xP)]  aa~ 

q P 3 

+ ( - 1 ) r a p  q 1-I 1] e (Yk t ;ak )~a  I O a m e X p [ - p V p ( X P ) ]  (4.17) 
/ = l k = l  

Here we have made use of Eqs. (2.9a) and (4.15). For  q = 0 the first term of 
Eq. (4.17) is identically zero. 

As a simple application of (4.17), consider obtaining the distribution 
function associated with finding a point at x l on the matrix-particle inter- 
face and the center of a sphere of radius R at r~ for a system of fully 
penetrable spheres. From Eqs. (4.5) and (4.17), we find 

F s p ( X 1  , r l )  ---- P6(Yll  - al)  exp( -p4~R3/3)  

+ p24~R 2 exp(--p4~R3/3) e(Y l l ;  R)  

= p 6 ( y ~  - a1)r + pse(y,~ ; R)  (4.18) 

where r = e x p ( -  p4~R3/3) is the matrix volume fraction and s = 4~R2pr is 
the specific surface for the model. (ls'25) Note that the first term of Eq. (4.18) 
is zero everywhere except when x I is on the surface of the sphere centered 
at rl (i.e., when Yl~ = [ x l - r ~ l  =R) .  The second term in (4.18) is the con- 
tribution to Fsp when x~ and rl describe positions on different spheres. 
When yl~ --* o% Eq. (4.18) states that Fsp--* ps, as expected [-cf. Eq. (2.11 )]. 

4.3. Results for Totally Impenetrable Spheres 

Consider a statistically isotropic distribution of totally impenetrable 
spheres (~ = 1) of equal radius R. For  such a model, we obtain some new 
results for the two-point surface correlation functions Fsm, Fs~, and Fsp. 
Using Eqs. (4.8), (4.9), and (4.11) and the fact that, for impenetrable 
spheres, the series are truncated after two-body terms (cf. Section 3), we 
have 

Fsm(X ) = s - p6 | m -- ffsm(X) 

Fss(X) = p6 | ,~ + Yss(x) 

Fsp(X) = 6(x -- R )(p -- P2 | m)  + F~p(X) 

(4.19) 

(4.20) 

(4.21) 
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where 6 ( x -  R) is the Dirac delta function, m is the step function defined by 
Eq. (2.5) with a i=  R, and f |  h denotes the three-dimensional convolution 
integral 

f f ( x )  h(lx - x']) dx' 

for any pair of functions f and h. The terms with overbars in (4.19) (4.21) 
are also convolution integrals: 

Fsm(X ) = ,0 2 @ • @ m (4.22) 

Fss(x) = P2 | g) | 6 (4.23) 

Fsp(X ) = e(r; R) P2 | C~ (4.24) 

Clearly, ffsm and F~s can each be expressed in terms of F~p, i.e., 

ffsrn(X) = [ f f  ~p/e ] | m (4.25) 

and 

Fs~(X ) = [Fsv/e ] | 6 (4.26) 

To our knowledge, relations (4.25) and (4.26) are new. 
Having established that all of the correlation functions can be 

expressed in terms of convolution integrals, we can exploit the useful 
property that the Fourier transform of a convolution integral is simply the 
product of the Fourier transforms of the individual functions. By taking the 
inverse Fourier transform of the transformed convolution integrals, one 
can reduce all of the integrals [including the sixfold integrals (4.22) and 
(4.23)] to one-dimensional quadratures. 

The single convolution integrals in (4.19) and (4.20) are easily 
evaluated. We have 

and 

~'�89 - x/2R) ,  x <<. 2R 
p 6 |  = t O, x >  2R 

(4.27) 

~s/2x, 0 < x <~ 2R (4.28) 
P 6 |  ~0, x > 2 R  

Note that the first term of (4.21) is nonzero only when x = - R  and hence 
one only needs to know the value of the quantity p -  P2 | m at this single 
value, which is simply equal to p. 
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In order to evaluate (4.19) (4.21), we must know the two-particle 
probability density function P2. This quantity can be obtained for an 
equilibrium distribution of impenetrable spheres using the highly accurate 
Verlet-Weis (31/ modification of the analytical Percus-Yevick expression for 
D2 .(32) Elsewhere, ~33~ we calculate Fsm, Fs~, and Fsp for such a distribution, 
using standard Fourier transform techniques, (~5) for sphere volume frac- 
tions up to 94% of the random-close-packing value. 134/ (Note that for this 
model the particle-phase volume fraction Cp is simply equal to the reduced 
density r/= p47rR3/3 = 1 -  ~b.) Thermodynamic consistency checks (on the 
Verlet-Weiss pressure and compressibility) ensure highly accurate results 
for ff~m, Fss, and Fsp. This work ~33) gives the first theoretical determinations 
of the two-point surface correlation functions. Figure 3 gives these quan- 
tities, scaled by their long-range values, as a function of the distance x at 
~/= 0.5. The reason why F~p has a cusp at x = 3R is explained in detail in 
Ref. 33. 

Bounds on the permeability that utilize such information were not 
calculated in Ref. 33, however, since the focus there was on microstructure 
characterization rather than on bounds that utilize this information. Here 
we carry out such a calculation for the Doi upper bound on k, Eq. (4.6), 
employing the impenetrable-sphere results for Fmm, ~5/ and the surface 
correlation functions Fsm and Fss .(33) The one-dimensional integral (4.6) is 

1.2 

0.8 

0.4 

b 05 = . 

sp 

O . C  I I I I 

0.0 2.0 X 4.0 ~0 

Fig. 3. The scaled two-point surface correlation functions F~,,,/srl, Fss/S 2, and Fsp/ps for 
impenetrable spheres of unit radius at a sphere volume fraction r/= 1 - r = 0.5, as a function 
of the distance between the two points x/TM 
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computed using a trapezoidal rule for 0 ~< t/~< 0.6. Table I summarizes these 
results by giving the lower bound on ks /k  as a function of t/, where 

k s = 2R2/90p (4.29) 

is the exact result for Stokes flow through a very dilute assemblage of 
spheres. Our results reported in Table I are accurate up to the number of 
significant figures displayed. Berryman (19~ has computed the Doi integral 
(4.6) using a Monte Carlo integration technique. His results are also given 
in Table I. Note that the discrepancies between the present results and 
Berryman's results increase significantly as t/increases. Berryman has com- 
mented on the inaccuracies associated with his calculations, but, in light of 
the fact that our results have been obtained using essentially exact 
analytical expressions for P2, we believe that he has grossly underestimated 
the errors involved in his technique. This Monte Carlo integration 
procedure is clearly not efficient when dealing with integrands that involve 
discontinuous functions. Figure 3 combined with (4.27) and (4.28) shows 
that Fss is discontinuous at x = 2R and that Fsm has a discontinuous first 
derivative at x = 2R. From = $2 is, on the other hand, much smoother and 
hence should contribute the smallest error to the total integral (4.6) when 
the Monte Carlo procedure is employed. 

Table I. Comparison of the Doi Lower 
B o u n d  on  ks/k, for an A s s e m b l a g ~  o f  
Impenetrable Spheres, as a F u n c t i o n  o f  t h e  
Sphere Volume Fraction q = 1 - q~ as 
C a l c u l a t e d  in t h e  Present Work and in 

Ref .  19, R e s p e c t i v e l y  

k.jk 

r/ Present  work  Ref. 19 

0.001 1.005 1.000 

0.06 1.35 1.00 

0.10 1.64 - -  

0.19 2.58 1.01 

0.20 2.71 

0.30 4.57 - -  

0.38 7.13 1.20 

0.40 8.02 - -  

0.45 10.9 1.31 

0.49 14.2 1.37 

0.50 15.2 - -  

0.60 34.5 - -  
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In Fig. 4 we compare our results for ks/k to the Kozeny Carman 
empirical formula 

k,. 10~bp (4.30) 
k (1 - -  ~p)3 

It is clear that the Doi bounds are much more accurate than Berryman 
originally thought. This result has important implications, since it offers 
hope that bounds that incorporate the next level of microstructural infor- 
mation (i.e., three-point information) will lead to accurate estimates of k. 
Examples of such bounds are extensions of Doi's bounds described above 
and the Weissberg-Prager bound (18) (see Section 4.4). 

As a last example for impenetrable-sphere systems, we comment on 
the relationship between the bounds on o- e due to Beran, (2) Eq. (4.13), and 
to Torquato, (161 Eq. (4.12). Recently, Beasley and Torquato (~5) have 

K S 
K I0 

ioo / 

/ 
KOZENY-CARMAN~, 

5O / 

/ / /  

/ /  

5 

BOUND 

I I I I 

0.0 0.2 0.4 0.6 0.8 

r 

Fig. 4. Compar ison of the Doi lower bound on ks/k for impenetrable spheres computed in 
the present work using Eq. (4.6) and the Kozeny-Carman  empirical formula (4.30) as a 
function of the sphere volume fraction ~ : r = 1 - r Since the latter expression breaks down 
at large porosities, it is plotted for ~/> 0.2. 
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applied the formalism of the previous section to show that the Beran and 
Torquato bounds are identical for the special case of totally impenetrable 
spheres in a matrix. Using Eqs. (4.1) and (4.10) and the results of Section 3, 
it is easy to show that the Sn (involved in the Beran bounds) and the G~ ~I 
(involved in the Torquato bounds) are related to one another for this 
model. In particular, the lower order relations are given exactly by 

S, = G~o I ~ = ~b (4.31 ) 

S 2 ( x , 2 ) = S l  - d r 2 m ( l x , - r z l ) G ~ 1 ~ ( I x 2 - r z l )  (4.32) 

and 

$3(x12, x13)= $2(X23) -- dr3 re(Ix1--r3[) e(jx2--r31) Gill(Ix3--r31) 

-k- J / d r  3 dr4 re(Ix 1 -r31)m(qx2-r41) 

x G(21t(x3-r3, x 3 - r 4 )  (4.33) 

where a i = R in the step functions m and e, and where xi/= xi - x /and  x~/= 
[x~i I. Substituting Eqs. (4.31) (4.33) into the Beran bounds and simplifying 
the resulting integrals leads to the fact that the Beran and Torquato 
bounds are identical to one another for impenetrable-sphere models. For 
), < 1, the Beran bounds prove to be slightly more restrictive than the Tor- 
quato bounds. The Beran or, equivalently, the Torquato bounds have 
recently been computed for an equilibrium distribution of impenetrable 
spheres. (36) 

4.4. Results for  Par t ia l ly  Pene t rab le  Spheres  

Here we consider results for dilute dispersions of spheres distributed 
with arbitrary degree of impenetrability 2. Specifically, we present new 
results for the Weissber~Prager (18/ inverse permeability k -1, expanded 
through second order in the sphere volume fraction ~bp, in the PS (23) and 
PCS C24) models. In order to accomplish this, we must obtain the low-den- 
sity expansions of the statistical quantities involved in the bound (G] 1 I, G~ll, 
and Fsp ) for these interpenetrable-sphere models, utilizing Eqs. (4.10) and 
(4.11). Upon substitution of these expansions into the Weissberg-Prager 
lower bound on the inverse permeability k-1, we find 

k~/k ~ 1 + K(')Op -t- O(q~ 2) (4.34) 

where in the PS and PCS models, respectively, 

KIll 3 2 (3 in 3 143\ = ~ +  + - ~ )  (4.35) 

822/45/5-6-7 
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and 

K(I/ 3 26 ~24 ~622 9 2(1+72)  
= ~ - -  + + - - g 2  16(22+ 1) 2 

2 3 
+ 16(22 + 1 )4 I- ~ (1 + 322) ln(22 + 1 ) (4.36) 

The details of these calculations are described elsewhere. 137) In the extreme 
limits, we have that 

K/1)= 3/2 (4.37) 

for fully penetrable spheres (2 = 0) and 

K (l /= 3 In 3 + 193/81 ~ 5.68 (4.38) 

for totally impenetrable spheres (2 = 1 ). 
There are two comments we would like to make regarding Eqs. 

(4.34)-(4.36). Firstly, in order to obtain exactly the permeability for 
arbitrary 2, the solution to the two-sphere boundary-value problem for two 
interpenetrating spheres must be known. Short of obtaining the solution to 
this nontrivial problem, low-density bounds on k offer the next best means 
of studying the effect of particle overlap on k. At the same @, the results 
(4.34) (4.36) generally indicate that the effect of decreasing 2 is to decrease 
k -1 or increase the permeability. (For example, K (ll for 2 = 1 is almost four 
times larger than its counterpart for 2=0 . )  Secondly, when we exactly 
evaluate the first-order coefficient K (l) of the Doi bound for the case 2 = 1, 
we find that K(~}=5.0, which is obviously less than the Weissberg-Prager 
value of 5.68. In other words, the Weissberg-Prager bound, through this 
order in @, is sharper than the Doi bound for the case of impenetrable 
spheres. This is not surprising, since the former involve not only one- and 
two-point information (as does the latter), but also three-point infor- 
mation. In light of this, it is expected that the Weissberg-Prager bound will 
yield the most accurate bound on k for an assemblage of impenetrable 
spheres, through all orders in ~bp. 
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